Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers
نویسندگان
چکیده
Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays.
منابع مشابه
Data on force-dependent structural changes of chromatin fibers measured with magnetic tweezers
The compaction of chromatin fibers regulates the accessibility of embedded DNA, highly associated with transcriptional activities [1]. Single molecule force spectroscopy has revealed the great details of the structural changes of chromatin fibers in the presence of external exerted force [2-7]. However, most of the studies focus on a specific force regime [2,3,8,9]. The data here show force-ext...
متن کاملInsights into chromatin fibre structure by in vitro and in silico single-molecule stretching experiments.
The detailed structure and dynamics of the chromatin fibre and their relation to gene regulation represent important open biological questions. Recent advances in single-molecule force spectroscopy experiments have addressed these questions by directly measuring the forces that stabilize and alter the folded states of chromatin, and by investigating the mechanisms of fibre unfolding. We present...
متن کاملCharacterization of nucleosome unwrapping within chromatin fibers using magnetic tweezers.
Nucleosomal arrays fold into chromatin fibers and the higher-order folding of chromatin plays a strong regulatory role in all processes involving DNA access, such as transcription and replication. A fundamental understanding of such regulation requires insight into the folding properties of the chromatin fiber in molecular detail. Despite this, the structure and the mechanics of chromatin fiber...
متن کاملSingle-molecule force spectroscopy: a method for quantitative analysis of ligand-receptor interactions.
The quantitative analysis of molecular interactions is of high interest in medical research. Most methods for the investigation of ligand-receptor complexes deal with huge ensembles of biomolecules, but often neglect interactions with low affinity or small subpopulations with different binding properties. Single-molecule force spectroscopy offers fascinating possibilities for the quantitative a...
متن کاملThe dynamics of individual nucleosomes controls the chromatin condensation pathway: direct atomic force microscopy visualization of variant chromatin.
Chromatin organization and dynamics is studied at scales ranging from single nucleosome to nucleosomal array by using a unique combination of biochemical assays, single molecule imaging technique, and numerical modeling. We show that a subtle modification in the nucleosome structure induced by the histone variant H2A.Bbd drastically modifies the higher order organization of the nucleosomal arra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 43 شماره
صفحات -
تاریخ انتشار 2015